Multi-Scale Video Frame-Synthesis Network with Transitive Consistency Loss

نویسندگان

  • Zhe Hu
  • Yinglan Ma
  • Lizhuang Ma
چکیده

Traditional approaches to interpolate/extrapolate frames in a video sequence require accurate pixel correspondences between images, e.g., using optical flow. Their results stem on the accuracy of optical flow estimation, and could generate heavy artifacts when flow estimation failed. Recently methods using auto-encoder has shown impressive progress, however they are usually trained for specific interpolation/extrapolation settings and lack of flexibility and generality for more applications. Moreover, these models are usually heavy in terms of of model size which constrains the application on mobile devices. In order to reduce these limitations, we propose a unified network to parameterize the interest frame position and therefore infer interpolate/extrapolate frames within the same framework. To achieve this, we introduce a transitive consistency loss to better regularize the network. We adopt a multi-scale structure for the network so that the parameters can be shared across multi-layers. Our approach avoids expensive global optimization of optical flow methods, and is efficient and flexible for video interpolation/extrapolation applications. Experimental results have shown that our method performs favorably against state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Feedback Based Mechanism for Video Streaming Over Multipath Ad Hoc Networks

Ad hoc networks are multi-hop wireless networks without a pre-installed infrastructure. Such networks are widely used in military applications and in emergency situations as they permit the establishment of a communication network at very short notice with a very low cost. Video is very sensitive for packet loss and wireless ad-hoc networks are error prone due to node mobility and weak links. H...

متن کامل

Adaptive Spectral Separation Two Layer Coding with Error Concealment for Cell Loss Resilience

This paper addresses the issue of cell loss and its consequent effect on video quality in a packet video system, and examines possible compensative measures. In the system's enconder, adaptive spectral separation is used to develop a two-layer coding scheme comprising a high priority layer to carry essential video data and a low priority layer with data to enhance the video image. A two-step er...

متن کامل

Frame Interpolation with Multi-Scale Deep Loss Functions and Generative Adversarial Networks

Frame interpolation attempts to synthesise intermediate frames given one or more consecutive video frames. In recent years, deep learning approaches, and in particular convolutional neural networks, have succeeded at tackling lowand high-level computer vision problems including frame interpolation. There are two main pursuits in this line of research, namely algorithm efficiency and reconstruct...

متن کامل

A Method to Reduce Effects of Packet Loss in Video Streaming Using Multiple Description Coding

Multiple description (MD) coding has evolved as a promising technique for promoting error resiliency of multimedia system in real-time application programs over error-prone communicational channels. Although multiple description lattice vector quantization (MDCLVQ) is an efficient method for transmitting reliable data in the context of potential error channels, this method doesn’t consider disc...

متن کامل

A Multi-scale Multiple Instance Video Description Network

Generating natural language descriptions for in-thewild videos is a challenging task. Most state-of-the-art methods for solving this problem borrow existing deep convolutional neural network (CNN) architectures (Alexnet, Googlenet) to extract a visual representation of the input video. However, these deep CNN architectures are designed for single-label centered-positioned object classification....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.02874  شماره 

صفحات  -

تاریخ انتشار 2017